Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Cancer Res ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657108

ABSTRACT

Solid tumors are highly reliant on lipids for energy, growth, and survival. In prostate cancer, the activity of the androgen receptor (AR) is associated with reprogramming of lipid metabolic processes. Here, we identified acyl-CoA synthetase medium chain family members 1 and 3 (ACSM1 and ACSM3) as AR-regulated mediators of prostate cancer metabolism and growth. ACSM1 and ACSM3 were upregulated in prostate tumors compared to non-malignant tissues and other cancer types. Both enzymes enhanced proliferation and protected prostate cancer cells from death in vitro, while silencing ACSM3 led to reduced tumor growth in an orthotopic xenograft model. ACSM1 and ACSM3 were major regulators of the prostate cancer lipidome and enhanced energy production via fatty acid oxidation. Metabolic dysregulation caused by loss of ACSM1/3 led to mitochondrial oxidative stress, lipid peroxidation and cell death by ferroptosis. Conversely, elevated ACSM1/3 activity enabled prostate cancer cells to survive toxic levels of medium chain fatty acids and promoted resistance to ferroptosis-inducing drugs and AR antagonists. Collectively, this study reveals a tumor-promoting function for medium chain acyl-CoA synthetases and positions ACSM1 and ACSM3 as key players in prostate cancer progression and therapy resistance.

2.
Article in English | MEDLINE | ID: mdl-38656127

ABSTRACT

Fatty liver is characterized by the expansion of lipid droplets (LDs) and is associated with the development of many metabolic diseases. We assessed the morphology of hepatic LDs and performed quantitative proteomics in lean, glucose-tolerant mice compared to high-fat diet (HFD) fed mice that displayed hepatic steatosis and glucose intolerance as well as high-starch diet (HStD) fed mice who exhibited similar levels of hepatic steatosis but remained glucose tolerant. Both HFD and HStD-fed mice had more and larger LDs than Chow-fed animals. We observed striking differences in liver LD proteomes of HFD and HStD-fed mice compared to Chow-fed mice, with fewer differences between HFD and HStD. Taking advantage of our diet strategy, we identified a fatty liver LD proteome consisting of proteins common in HFD- and HStD-fed mice, as well as a proteome associated with glucose tolerance that included proteins shared in Chow and HStD but not HFD-fed mice. Notably, glucose intolerance was associated with changes in the ratio of adipose triglyceride lipase to perilipin 5 in the LD proteome, suggesting dysregulation of neutral lipid homeostasis in glucose-intolerant fatty liver. We conclude that our novel dietary approach uncouples ectopic lipid burden from insulin resistance-associated changes in the hepatic lipid droplet proteome.

3.
Adv Sci (Weinh) ; : e2307963, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602451

ABSTRACT

In recent decades, the role of tumor biomechanics on cancer cell behavior at the primary site has been increasingly appreciated. However, the effect of primary tumor biomechanics on the latter stages of the metastatic cascade, such as metastatic seeding of secondary sites and outgrowth remains underappreciated. This work sought to address this in the context of triple negative breast cancer (TNBC), a cancer type known to aggressively disseminate at all stages of disease progression. Using mechanically tuneable model systems, mimicking the range of stiffness's typically found within breast tumors, it is found that, contrary to expectations, cancer cells exposed to softer microenvironments are more able to colonize secondary tissues. It is shown that heightened cell survival is driven by enhanced metabolism of fatty acids within TNBC cells exposed to softer microenvironments. It is demonstrated that uncoupling cellular mechanosensing through integrin ß1 blocking antibody effectively causes stiff primed TNBC cells to behave like their soft counterparts, both in vitro and in vivo. This work is the first to show that softer tumor microenvironments may be contributing to changes in disease outcome by imprinting on TNBC cells a greater metabolic flexibility and conferring discrete cell survival advantages.

4.
Br J Cancer ; 130(5): 741-754, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38216720

ABSTRACT

BACKGROUND: Peroxisomes are central metabolic organelles that have key roles in fatty acid homoeostasis. As prostate cancer (PCa) is particularly reliant on fatty acid metabolism, we explored the contribution of peroxisomal ß-oxidation (perFAO) to PCa viability and therapy response. METHODS: Bioinformatic analysis was performed on clinical transcriptomic datasets to identify the perFAO enzyme, 2,4-dienoyl CoA reductase 2 (DECR2) as a target gene of interest. Impact of DECR2 and perFAO inhibition via thioridazine was examined in vitro, in vivo, and in clinical prostate tumours cultured ex vivo. Transcriptomic and lipidomic profiling was used to determine the functional consequences of DECR2 inhibition in PCa. RESULTS: DECR2 is upregulated in clinical PCa, most notably in metastatic castrate-resistant PCa (CRPC). Depletion of DECR2 significantly suppressed proliferation, migration, and 3D growth of a range of CRPC and therapy-resistant PCa cell lines, and inhibited LNCaP tumour growth and proliferation in vivo. DECR2 influences cell cycle progression and lipid metabolism to support tumour cell proliferation. Further, co-targeting of perFAO and standard-of-care androgen receptor inhibition enhanced suppression of PCa cell proliferation. CONCLUSION: Our findings support a focus on perFAO, specifically DECR2, as a promising therapeutic target for CRPC and as a novel strategy to overcome lethal treatment resistance.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Lipid Metabolism/genetics , Cell Line, Tumor , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Androgens/metabolism , Cell Proliferation , Fatty Acids
5.
Biochem Biophys Res Commun ; 691: 149273, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38029544

ABSTRACT

Recently, the fatty acid elongation enzyme ELOVL5 was identified as a critical pro-metastatic factor in prostate cancer, required for cell growth and mitochondrial homeostasis. The fatty acid elongation reaction catalyzed by ELOVL5 utilizes malonyl-CoA as the carbon donor. Here, we demonstrate that ELOVL5 knockdown causes malonyl-CoA accumulation. Malonyl-CoA is a cellular substrate that can inhibit fatty acid ß-oxidation in the mitochondria through allosteric inhibition of carnitine palmitoyltransferase 1A (CPT1A), the enzyme that controls the rate-limiting step of the long chain fatty acid ß-oxidation cycle. We hypothesized that changes in malonyl-CoA abundance following ELOVL5 knockdown could influence mitochondrial ß-oxidation rates in prostate cancer cells, and regulate cell viability. Accordingly, we find that ELOVL5 knockdown is associated with decreased mitochondrial ß-oxidation in prostate cancer cells. Combining ELOVL5 knockdown with FASN inhibition to increase malonyl-CoA abundance endogenously enhances the effect of ELOVL5 knockdown on prostate cancer cell viability, while preventing malonyl-CoA production rescues the cells from the effect of ELOVL5 knockdown. Our findings indicate an additional role for fatty acid elongation, in the control of malonyl-CoA homeostasis, alongside its established role in the production of long-chain fatty acid species, to explain the importance of fatty acid elongation for cell viability.


Subject(s)
Malonyl Coenzyme A , Prostatic Neoplasms , Male , Humans , Malonyl Coenzyme A/metabolism , Malonyl Coenzyme A/pharmacology , Cell Survival , Fatty Acids/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Carnitine O-Palmitoyltransferase/metabolism
6.
Cell Rep ; 42(12): 113536, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38060447

ABSTRACT

Fibroblast growth factor 21 (FGF21), an endocrine signal robustly increased by protein restriction independently of an animal's energy status, exerts profound effects on feeding behavior and metabolism. Here, we demonstrate that considering the nutritional contexts within which FGF21 is elevated can help reconcile current controversies over its roles in mediating macronutrient preference, food intake, and energy expenditure. We show that FGF21 is primarily a driver of increased protein intake in mice and that the effect of FGF21 on sweet preference depends on the carbohydrate balance of the animal. Under no-choice feeding, FGF21 infusion either increased or decreased energy expenditure depending on whether the animal was fed a high- or low-energy diet, respectively. We show that while the role of FGF21 in mediating feeding behavior is complex, its role in promoting protein appetite is robust and that the effects on sweet preference and energy expenditure are macronutrient-state-dependent effects of FGF21.


Subject(s)
Appetite , Fibroblast Growth Factors , Mice , Animals , Fibroblast Growth Factors/metabolism , Feeding Behavior , Energy Metabolism , Liver/metabolism
7.
Discov Oncol ; 13(1): 135, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36481936

ABSTRACT

BACKGROUND: Acquired treatment resistance is a significant problem in breast cancer management, and alterations in lipid metabolism have been proposed to contribute to the development of drug resistance as well as other aspects of tumor progression. The present study aimed to identify the role of cholesterol metabolism in MCF-7 and MDA-MB-231 breast cancer cell response to cisplatin (CDDP) treatment in the acute setting and in a model of CDDP resistance. METHODS: MCF-7 (luminal A), MDA-MB-231 (triple-negative) and CDDP-resistant MDA-MB-231 (MDACR) cell lines were grown in the presence or absence of CDDP in combination with atorvastatin (ATV), lipid depletion or low-density lipoprotein loading and were analyzed by a variety of biochemical and radiometric techniques. RESULTS: Co-administration of CDDP and ATV strongly reduced cell proliferation and viability to a greater extent than CDDP alone, especially in MDA-MB-231 cells. These findings were associated with reduced cholesteryl ester synthesis and storage in MDA-MB-231 cells. In MDACR cells, acetyl-CoA acetyltransferase 1 (ACAT-1) was upregulated compared to naïve MDA-MB-231 cells and ATV treatment restored CDDP sensitivity, suggesting that aberrant ACAT-1 expression and associated changes in cholesterol metabolism contribute to CDDP resistance in MDA-MB-231 cells. CONCLUSION: These findings indicate that the elevated susceptibility of MDA-MB-231 cells to co-administration of CDDP and ATV, is associated with an increased reliance on cholesteryl ester availability. Our data from these cell culture-based studies identifies altered cholesterol homeostasis as an adaptive response to CDDP treatment that contributes to aggressiveness and chemotherapy resistance.

8.
Cancers (Basel) ; 14(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36230715

ABSTRACT

Elevated circulating sphingolipids are associated with shorter overall survival and therapeutic resistance in metastatic castration-resistant prostate cancer (mCRPC), suggesting that perturbations in sphingolipid metabolism promotes prostate cancer growth. This study assessed whether addition of simvastatin to standard treatment for mCRPC can modify a poor prognostic circulating lipidomic profile represented by a validated 3-lipid signature (3LS). Men with mCRPC (n = 27) who were not on a lipid-lowering agent, were given simvastatin for 12 weeks (40 mg orally, once daily) with commencement of standard treatment. Lipidomic profiling was performed on their plasma sampled at baseline and after 12 weeks of treatment. Only 11 men had the poor prognostic 3LS at baseline, of whom five (45%) did not retain the 3LS after simvastatin treatment (expected conversion rate with standard treatment = 19%). At baseline, the plasma profiles of men with the 3LS displayed higher levels (p < 0.05) of sphingolipids (ceramides, hexosylceramides and sphingomyelins) than those of men without the 3LS. These plasma sphingolipids were reduced after statin treatment in men who lost the 3LS (mean decrease: 23−52%, p < 0.05), but not in men with persistent 3LS, and were independent of changes to plasma cholesterol, LDL-C or triacylglycerol. In conclusion, simvastatin in addition to standard treatment can modify the poor prognostic circulating lipidomic profile in mCRPC into a more favourable profile at twice the expected conversion rate.

9.
Int J Mol Sci ; 23(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35806209

ABSTRACT

Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. This implies the need for cancer cells to accommodate an increased delivery of LDL along the endocytic pathway to late endosomes/lysosomes (LE/Lys), providing a rapid and effective distribution of LDL-derived cholesterol from LE/Lys to other organelles for cholesterol to foster cancer growth and spread. LDL-cholesterol exported from LE/Lys is facilitated by Niemann-Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families. In addition, lysosomal membrane proteins, small Rab GTPases as well as scaffolding proteins, including annexin A6 (AnxA6), contribute to regulating cholesterol egress from LE/Lys. Here, we summarize current knowledge that links upregulated activity and expression of cholesterol transporters and related proteins in LE/Lys with cancer growth, progression and treatment outcomes. Several mechanisms on how cellular distribution of LDL-derived cholesterol from LE/Lys influences cancer cell behavior are reviewed, some of those providing opportunities for treatment strategies to reduce cancer progression and anticancer drug resistance.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/analysis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cholesterol/metabolism , Cholesterol, LDL/metabolism , Endosomes/metabolism , Humans , Lysosomes/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Niemann-Pick C1 Protein/metabolism , rab GTP-Binding Proteins/metabolism
10.
Oncogene ; 41(34): 4066-4078, 2022 08.
Article in English | MEDLINE | ID: mdl-35851845

ABSTRACT

Glutamine is a conditionally essential nutrient for many cancer cells, but it remains unclear how consuming glutamine in excess of growth requirements confers greater fitness to glutamine-addicted cancers. By contrasting two breast cancer subtypes with distinct glutamine dependencies, we show that glutamine-indispensable triple-negative breast cancer (TNBC) cells rely on a non-canonical glutamine-to-glutamate overflow, with glutamine carbon routed once through the TCA cycle. Importantly, this single-pass glutaminolysis increases TCA cycle fluxes and replenishes TCA cycle intermediates in TNBC cells, a process that achieves net oxidation of glucose but not glutamine. The coupling of glucose and glutamine catabolism appears hard-wired via a distinct TNBC gene expression profile biased to strip and then sequester glutamine nitrogen, but hampers the ability of TNBC cells to oxidise glucose when glutamine is limiting. Our results provide a new understanding of how metabolically rigid TNBC cells are sensitive to glutamine deprivation and a way to select vulnerable TNBC subtypes that may be responsive to metabolic-targeted therapies.


Subject(s)
Glutamine , Triple Negative Breast Neoplasms , Cell Line, Tumor , Citric Acid Cycle , Glucose/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
11.
BMC Med ; 20(1): 112, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35331214

ABSTRACT

BACKGROUND: Both changes in circulating lipids represented by a validated poor prognostic 3-lipid signature (3LS) and somatic tumour genetic aberrations are individually associated with worse clinical outcomes in men with metastatic castration-resistant prostate cancer (mCRPC). A key question is how the lipid environment and the cancer genome are interrelated in order to exploit this therapeutically. We assessed the association between the poor prognostic 3-lipid signature (3LS), somatic genetic aberrations and clinical outcomes in mCRPC. METHODS: We performed plasma lipidomic analysis and cell-free DNA (cfDNA) sequencing on 106 men with mCRPC commencing docetaxel, cabazitaxel, abiraterone or enzalutamide (discovery cohort) and 94 men with mCRPC commencing docetaxel (validation cohort). Differences in lipid levels between men ± somatic genetic aberrations were assessed with t-tests. Associations between the 3LS and genetic aberrations with overall survival (OS) were examined using Kaplan-Meier methods and Cox proportional hazard models. RESULTS: The 3LS was associated with shorter OS in the discovery (hazard ratio [HR] 2.15, 95% confidence interval [CI] 1.4-3.3, p < 0.001) and validation cohorts (HR 2.32, 95% CI 1.59-3.38, p < 0.001). Elevated plasma sphingolipids were associated with AR, TP53, RB1 and PI3K aberrations (p < 0.05). Men with both the 3LS and aberrations in AR, TP53, RB1 or PI3K had shorter OS than men with neither in both cohorts (p ≤ 0.001). The presence of 3LS and/or genetic aberration was independently associated with shorter OS for men with AR, TP53, RB1 and PI3K aberrations (p < 0.02). Furthermore, aggressive-variant prostate cancer (AVPC), defined as 2 or more aberrations in TP53, RB1 and/or PTEN, was associated with elevated sphingolipids. The combination of AVPC and 3LS predicted for a median survival of ~12 months. The relatively small sample size of the cohorts limits clinical applicability and warrants future studies. CONCLUSIONS: Elevated circulating sphingolipids were associated with AR, TP53, RB1, PI3K and AVPC aberrations in mCRPC, and the combination of lipid and genetic abnormalities conferred a worse prognosis. These findings suggest that certain genotypes in mCRPC may benefit from metabolic therapies.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Biomarkers, Tumor/genetics , Docetaxel/therapeutic use , Female , Humans , Lipidomics , Lipids , Male , Phosphatidylinositol 3-Kinases/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Sphingolipids/therapeutic use
12.
Cancer Metab ; 10(1): 1, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35033184

ABSTRACT

BACKGROUND: Prostate cancer growth is driven by androgen receptor signaling, and advanced disease is initially treatable by depleting circulating androgens. However, prostate cancer cells inevitably adapt, resulting in disease relapse with incurable castrate-resistant prostate cancer. Androgen deprivation therapy has many side effects, including hypercholesterolemia, and more aggressive and castrate-resistant prostate cancers typically feature cellular accumulation of cholesterol stored in the form of cholesteryl esters. As cholesterol is a key substrate for de novo steroidogenesis in prostate cells, this study hypothesized that castrate-resistant/advanced prostate cancer cell growth is influenced by the availability of extracellular, low-density lipoprotein (LDL)-derived, cholesterol, which is coupled to intracellular cholesteryl ester homeostasis. METHODS: C4-2B and PC3 prostate cancer cells were cultured in media supplemented with fetal calf serum (FCS), charcoal-stripped FCS (CS-FCS), lipoprotein-deficient FCS (LPDS), or charcoal-stripped LPDS (CS-LPDS) and analyzed by a variety of biochemical techniques. Cell viability and proliferation were measured by MTT assay and Incucyte, respectively. RESULTS: Reducing lipoprotein availability led to a reduction in cholesteryl ester levels and cell growth in C4-2B and PC3 cells, with concomitant reductions in PI3K/mTOR and p38MAPK signaling. This reduced growth in LPDS-containing media was fully recovered by supplementation of exogenous low-density lipoprotein (LDL), but LDL only partially rescued growth of cells cultured with CS-LPDS. This growth pattern was not associated with changes in androgen receptor signaling but rather increased p38MAPK and MEK1/ERK/MSK1 activation. The ability of LDL supplementation to rescue cell growth required cholesterol esterification as well as cholesteryl ester hydrolysis activity. Further, growth of cells cultured in low androgen levels (CS-FCS) was suppressed when cholesteryl ester hydrolysis was inhibited. CONCLUSIONS: Overall, these studies demonstrate that androgen-independent prostate cancer cell growth can be influenced by extracellular lipid levels and LDL-cholesterol availability and that uptake of extracellular cholesterol, through endocytosis of LDL-derived cholesterol and subsequent delivery and storage in the lipid droplet as cholesteryl esters, is required to support prostate cancer cell growth. This provides new insights into the relationship between extracellular cholesterol, intracellular cholesterol metabolism, and prostate cancer cell growth and the potential mechanisms linking hypercholesterolemia and more aggressive prostate cancer.

13.
Sci Rep ; 12(1): 596, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022465

ABSTRACT

Cholesterol is considered indispensable for cell motility, but how physiological cholesterol pools enable cells to move forward remains to be clarified. The majority of cells obtain cholesterol from the uptake of Low-Density lipoproteins (LDL) and here we demonstrate that LDL stimulates A431 squamous epithelial carcinoma and Chinese hamster ovary (CHO) cell migration and invasion. LDL also potentiated epidermal growth factor (EGF) -stimulated A431 cell migration as well as A431 invasion in 3-dimensional environments, using organotypic assays. Blocking cholesterol export from late endosomes (LE), using Niemann Pick Type C1 (NPC1) mutant cells, pharmacological NPC1 inhibition or overexpression of the annexin A6 (AnxA6) scaffold protein, compromised LDL-inducible migration and invasion. Nevertheless, NPC1 mutant cells established focal adhesions (FA) that contain activated focal adhesion kinase (pY397FAK, pY861FAK), vinculin and paxillin. Compared to controls, NPC1 mutants display increased FA numbers throughout the cell body, but lack LDL-inducible FA formation at cell edges. Strikingly, AnxA6 depletion in NPC1 mutant cells, which restores late endosomal cholesterol export in these cells, increases their cell motility and association of the cholesterol biosensor D4H with active FAK at cell edges, indicating that AnxA6-regulated transport routes contribute to cholesterol delivery to FA structures, thereby improving NPC1 mutant cell migratory behaviour.


Subject(s)
Annexin A6/metabolism , Cholesterol, LDL/metabolism , Focal Adhesions/metabolism , Niemann-Pick C1 Protein/metabolism , rab7 GTP-Binding Proteins/metabolism , Animals , CHO Cells , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cricetulus , Humans , Membrane Proteins/metabolism
14.
Nat Rev Cancer ; 21(12): 753-766, 2021 12.
Article in English | MEDLINE | ID: mdl-34417571

ABSTRACT

Fatty acid metabolism is known to support tumorigenesis and disease progression as well as treatment resistance through enhanced lipid synthesis, storage and catabolism. More recently, the role of membrane fatty acid composition, for example, ratios of saturated, monounsaturated and polyunsaturated fatty acids, in promoting cell survival while limiting lipotoxicity and ferroptosis has been increasingly appreciated. Alongside these insights, it has become clear that tumour cells exhibit plasticity with respect to fatty acid metabolism, responding to extratumoural and systemic metabolic signals, such as obesity and cancer therapeutics, to promote the development of aggressive, treatment-resistant disease. Here, we describe cellular fatty acid metabolic changes that are connected to therapy resistance and contextualize obesity-associated changes in host fatty acid metabolism that likely influence the local tumour microenvironment to further modify cancer cell behaviour while simultaneously creating potential new vulnerabilities.


Subject(s)
Lipid Metabolism , Neoplasms , Fatty Acids , Humans , Neoplasms/drug therapy , Obesity/metabolism , Tumor Microenvironment
15.
Elife ; 102021 08 12.
Article in English | MEDLINE | ID: mdl-34382934

ABSTRACT

Alterations to the androgen receptor (AR) signalling axis and cellular metabolism are hallmarks of prostate cancer. This study provides insight into both hallmarks by uncovering a novel link between AR and the pentose phosphate pathway (PPP). Specifically, we identify 6-phosphogluoconate dehydrogenase (6PGD) as an androgen-regulated gene that is upregulated in prostate cancer. AR increased the expression of 6PGD indirectly via activation of sterol regulatory element binding protein 1 (SREBP1). Accordingly, loss of 6PGD, AR or SREBP1 resulted in suppression of PPP activity as revealed by 1,2-13C2 glucose metabolic flux analysis. Knockdown of 6PGD also impaired growth and elicited death of prostate cancer cells, at least in part due to increased oxidative stress. We investigated the therapeutic potential of targeting 6PGD using two specific inhibitors, physcion and S3, and observed substantial anti-cancer activity in multiple models of prostate cancer, including aggressive, therapy-resistant models of castration-resistant disease as well as prospectively collected patient-derived tumour explants. Targeting of 6PGD was associated with two important tumour-suppressive mechanisms: first, increased activity of the AMP-activated protein kinase (AMPK), which repressed anabolic growth-promoting pathways regulated by acetyl-CoA carboxylase 1 (ACC1) and mammalian target of rapamycin complex 1 (mTORC1); and second, enhanced AR ubiquitylation, associated with a reduction in AR protein levels and activity. Supporting the biological relevance of positive feedback between AR and 6PGD, pharmacological co-targeting of both factors was more effective in suppressing the growth of prostate cancer cells than single-agent therapies. Collectively, this work provides new insight into the dysregulated metabolism of prostate cancer and provides impetus for further investigation of co-targeting AR and the PPP as a novel therapeutic strategy.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/metabolism , Cell Line , Emodin/analogs & derivatives , Feedback , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Pentose Phosphate Pathway , Prostatic Neoplasms/genetics , Signal Transduction , Sterol Regulatory Element Binding Protein 1/metabolism
16.
Cancer Metab ; 9(1): 2, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413672

ABSTRACT

Tumor cellular metabolism exhibits distinguishing features that collectively enhance biomass synthesis while maintaining redox balance and cellular homeostasis. These attributes reflect the complex interactions between cell-intrinsic factors such as genomic-transcriptomic regulation and cell-extrinsic influences, including growth factor and nutrient availability. Alongside glucose and amino acid metabolism, fatty acid metabolism supports tumorigenesis and disease progression through a range of processes including membrane biosynthesis, energy storage and production, and generation of signaling intermediates. Here, we highlight the complexity of cellular fatty acid metabolism in cancer, the various inputs and outputs of the intracellular free fatty acid pool, and the numerous ways that these pathways influence disease behavior.

17.
Nucl Med Biol ; 93: 37-45, 2021 02.
Article in English | MEDLINE | ID: mdl-33310350

ABSTRACT

INTRODUCTION: Altered lipid metabolism and subsequent changes in cellular lipid composition have been observed in prostate cancer cells, are associated with poor clinical outcome, and are promising targets for metabolic therapies. This study reports for the first time on the synthesis of a phospholipid radiotracer based on the phospholipid 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine (PC44:12) to allow tracking of polyunsaturated lipid tumor uptake via PET imaging. This tracer may aid in the development of strategies to modulate response to therapies targeting lipid metabolism in prostate cancer. METHODS: Lipidomics analysis of prostate tumor explants and LNCaP tumor cells were used to identify PC44:12 as a potential phospholipid candidate for radiotracer development. Synthesis of phosphocholine precursor and non-radioactive standard were optimised using click chemistry. The biodistribution of a fluorine-18 labeled analogue, N-{[4-(2-[18F]fluoroethyl)-2,3,4-triazol-1-yl]methyl}-1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine ([18F]2) was determined in LNCaP prostate tumor-bearing NOD SCID gamma mice by ex vivo biodistribution and PET imaging studies and compared to biodistribution of [18F]fluoromethylcholine. RESULTS: [18F]2 was produced with a decay-corrected yield of 17.8 ± 3.7% and an average radiochemical purity of 97.00 ± 0.89% (n = 6). Molar activity was 85.1 ± 3.45 GBq/µmol (2300 ± 93 mCi/µmol) and the total synthesis time was 2 h. Ex vivo biodistribution data demonstrated high liver uptake (41.1 ± 9.2%ID/g) and high splenic uptake (10.9 ± 9.1%ID/g) 50 min post-injection. Ex vivo biodistribution showed low absolute tumor uptake of [18F]2 (0.8 ± 0.3%ID/g). However, dynamic PET imaging demonstrated an increase over time of the relative tumor-to-muscle ratio with a peak of 2.8 ± 0.5 reached 1 h post-injection. In contrast, dynamic PET of [18F]fluoromethylcholine demonstrated no increase in tumor-to-muscle ratios due to an increase in both tumor and muscle over time. Absolute uptake of [18F]fluoromethylcholine was higher and peaked at 60 min post injection (2.25 ± 0.29%ID/g) compared to [18F]2 (1.44 ± 0.06%ID/g) during the 1 h dynamic scan period. CONCLUSIONS AND ADVANCES IN KNOWLEDGE: This study demonstrates the ability to radiolabel phospholipids and indicates the potential to monitor the in vivo distribution of phospholipids using fluorine-18 based PET.


Subject(s)
Fluorine Radioisotopes/chemistry , Phospholipids/chemistry , Phospholipids/chemical synthesis , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Cell Line, Tumor , Humans , Isotope Labeling , Male
18.
Mol Cancer Res ; 18(10): 1500-1511, 2020 10.
Article in English | MEDLINE | ID: mdl-32669400

ABSTRACT

HSP90 is a molecular chaperone required for stabilization and activation of hundreds of client proteins, including many known oncoproteins. AUY922 (luminespib), a new-generation HSP90 inhibitor, exhibits potent preclinical efficacy against several cancer types including prostate cancer. However, clinical use of HSP90 inhibitors for prostate cancer has been limited by toxicity and treatment resistance. Here, we aimed to design an effective combinatorial therapeutic regimen that utilizes subtoxic doses of AUY922, by identifying potential survival pathways induced by AUY922 in clinical prostate tumors. We conducted a proteomic analysis of 30 patient-derived explants (PDE) cultured in the absence and presence of AUY922, using quantitative mass spectrometry. AUY922 significantly increased the abundance of proteins involved in oxidative phosphorylation and fatty acid metabolism in the PDEs. Consistent with these findings, AUY922-treated prostate cancer cell lines exhibited increased mitochondrial mass and activated fatty acid metabolism processes. We hypothesized that activation of fatty acid oxidation is a potential adaptive response to AUY922 treatment and that cotargeting this process will sensitize prostate cancer cells to HSP90 inhibition. Combination treatment of AUY922 with a clinical inhibitor of fatty acid oxidation, perhexiline, synergistically decreased viability of several prostate cancer cell lines, and had significant efficacy in PDEs. The novel drug combination treatment induced cell-cycle arrest and apoptosis, and attenuated the heat shock response, a known mediator of HSP90 treatment resistance. This combination warrants further preclinical and clinical investigation as a novel strategy to overcome resistance to HSP90 inhibition. IMPLICATIONS: Metabolic pathways induced in tumor cells by therapeutic agents may be critical, but targetable, mediators of treatment resistance.


Subject(s)
Fatty Acids/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mass Spectrometry/methods , Prostatic Neoplasms/genetics , Humans , Male , Oxidation-Reduction , Prostatic Neoplasms/mortality , Survival Analysis
19.
J Biol Chem ; 295(38): 13250-13266, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32723868

ABSTRACT

Adipose tissue is essential for metabolic homeostasis, balancing lipid storage and mobilization based on nutritional status. This is coordinated by insulin, which triggers kinase signaling cascades to modulate numerous metabolic proteins, leading to increased glucose uptake and anabolic processes like lipogenesis. Given recent evidence that glucose is dispensable for adipocyte respiration, we sought to test whether glucose is necessary for insulin-stimulated anabolism. Examining lipogenesis in cultured adipocytes, glucose was essential for insulin to stimulate the synthesis of fatty acids and glyceride-glycerol. Importantly, glucose was dispensable for lipogenesis in the absence of insulin, suggesting that distinct carbon sources are used with or without insulin. Metabolic tracing studies revealed that glucose was required for insulin to stimulate pathways providing carbon substrate, NADPH, and glycerol 3-phosphate for lipid synthesis and storage. Glucose also displaced leucine as a lipogenic substrate and was necessary to suppress fatty acid oxidation. Together, glucose provided substrates and metabolic control for insulin to promote lipogenesis in adipocytes. This contrasted with the suppression of lipolysis by insulin signaling, which occurred independently of glucose. Given previous observations that signal transduction acts primarily before glucose uptake in adipocytes, these data are consistent with a model whereby insulin initially utilizes protein phosphorylation to stimulate lipid anabolism, which is sustained by subsequent glucose metabolism. Consequently, lipid abundance was sensitive to glucose availability, both during adipogenesis and in Drosophila flies in vivo Together, these data highlight the importance of glucose metabolism to support insulin action, providing a complementary regulatory mechanism to signal transduction to stimulate adipose anabolism.


Subject(s)
Adipocytes/metabolism , Drosophila Proteins/metabolism , Glucose/metabolism , Insulin/metabolism , Lipogenesis , Signal Transduction , 3T3-L1 Cells , Animals , Drosophila melanogaster , Glycerophosphates/metabolism , Mice , NADP/metabolism
20.
Elife ; 92020 07 20.
Article in English | MEDLINE | ID: mdl-32686647

ABSTRACT

Fatty acid ß-oxidation (FAO) is the main bioenergetic pathway in human prostate cancer (PCa) and a promising novel therapeutic vulnerability. Here we demonstrate therapeutic efficacy of targeting FAO in clinical prostate tumors cultured ex vivo, and identify DECR1, encoding the rate-limiting enzyme for oxidation of polyunsaturated fatty acids (PUFAs), as robustly overexpressed in PCa tissues and associated with shorter relapse-free survival. DECR1 is a negatively-regulated androgen receptor (AR) target gene and, therefore, may promote PCa cell survival and resistance to AR targeting therapeutics. DECR1 knockdown selectively inhibited ß-oxidation of PUFAs, inhibited proliferation and migration of PCa cells, including treatment resistant lines, and suppressed tumor cell proliferation and metastasis in mouse xenograft models. Mechanistically, targeting of DECR1 caused cellular accumulation of PUFAs, enhanced mitochondrial oxidative stress and lipid peroxidation, and induced ferroptosis. These findings implicate PUFA oxidation via DECR1 as an unexplored facet of FAO that promotes survival of PCa cells.


Subject(s)
Ferroptosis , Oxidoreductases Acting on CH-CH Group Donors/genetics , Prostatic Neoplasms/physiopathology , Cell Line, Tumor , Fatty Acids, Unsaturated/metabolism , Humans , Male , Oxidation-Reduction , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Prostatic Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...